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1 Introduction
One problem with writing an application report on PCB layout is that the people who read it are usually not
the ones who are going to use it. Even if the designer has struggled through electromagnetic fields, EMC,
EMI, board parasitics, transmission line effects, grounding, and so on, he will in all probability then go on
with his primary design task, leaving the layout to the CAD/layout person. Unfortunately, especially when it
comes to switching regulators, it is not enough to be concerned with just basic routing/connectivity and
mechanical issues. Both the designer and the CAD person need to be aware that the design of a
switching power converter is only as good as its layout. Which probably explains why a great many of
customer calls received, concerning switcher applications, are ultimately traced to poor layout practices.
Sadly, these could and should have been avoided on the very first prototype board, saving time and
money on all sides.

The overall subject of PCB design is an extremely wide one, embracing several
test/mechanical/production issues and also in some cases compliance/regulatory issues. There is also a
certain amount of physics/electromagnetics involved, if a clearer understanding is sought. But the purpose
of this application report is to reach the audience most likely to use it. Though there is enough design
information for the more experienced designer/CAD person, the application report includes a quick-set of
clear and concise basic rules that should be scrupulously followed to avoid a majority of problems. In
particular, we have provided recommended starting points for layout when using the popular LM267x,
LM259x and LM257x families (Figure 1) The focus is on the step-down (Buck) Simple Switcher ICs from
Texas Instruments, but the same principles hold for any topology and switching power application.

Most of the issues discussed in this application report revolve around simply assuring the desired
performance in terms of basic electrical functionality. Though luckily, as the beleaguered switcher designer
will be happy to know, in general all the electrical aspects involved are related and point in the same
general ‘direction’. So for example, an ‘ideal’ layout, that is, one that helps the IC function properly, also
leads to reduced electromagnetic emissions, and vice-versa. For example, reducing the area of loops with
switching currents will help in terms of EMI and performance. However the designer is cautioned that
there are some exceptions to this general 'trend'. One which is brought out in some detail here is the
practice of 'copper-filling', which may help reduce parasitic inductances and reduce noise-induced IC
problems, but can also increase EMI.

2 Quick-Set of Rules for SIMPLE SWITCHER® PCB Layout (Buck)
1. Place the catch diode and input capacitor as shown in Figure 1.
2. For high-speed devices (for example, LM267x) do not omit placing input decoupling/bypass ceramic

capacitor (0.1 µF–0.47 µF) as in Figure 1.
3. Connect vias to a Ground plane if available (optional, marked ‘X’ in Figure 1).
4. If vias fall under tab of SMT power device, these are considered ‘thermal vias’. Use correct dimensions

as discussed to avoid production issues. Or place the vias close to but not directly under the tab.
5. Route feedback trace correctly as discussed, away from noise sources such as the inductor and the

diode.
6. Do not increase width of copper on switching node injudiciously.
7. If very large heatsink area is required for catch diode (having estimated the heatsink requirement

correctly) use isolation as discussed.
8. For higher power SMT applications, use 2 oz board for better thermal management with less copper

area.
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Figure 1. Recommended Layout Starting Points

3 AC and DC Current Paths
Referring to Figure 2a, the bold lines represents the main (power) current flow in the converter during the
time the switch is ON. As the switch turns ON, the edge of the of the current waveform is provided largely
by CBYPASS, the remainder coming mainly from CIN. Some slower current components come from the
input DC power supply (not shown) and also refresh these input caps. Figure 2b represents the situation
when the switch is OFF. We can therefore see that in certain trace sections, current has to start flowing
suddenly during the instant of switch turn-off and in some sections it needs to stop flowing equally
suddenly. Figure 2c represents the ‘difference’, that is, traces shown bold in Figure 2 are those where the
current flow changes suddenly. During the turn-on transition the picture reverses, but the 'difference'
trace sections are the same. Therefore during either switch transition, 'step changes' of current take place
in these difference sections. These traces encounter the harmonic-rich rising or trailing edges of the
current pedestal waveform. The difference traces are considered 'critical' and deserve utmost attention
during PCB layout. It is often stated colloquially, that ‘AC current’ flows in these trace sections, and 'DC
current' in the others. The reason is that the basic switching PWM frequency forms only a fraction of the
total harmonic (Fourier) content of the current waveform in the 'AC' traces. In comparison, where ‘DC
current’ flows, the current does not change in a stepped fashion and so the harmonic content is lower. It is
also no surprise that the DC sections are those in series with the main inductor, because it is known that
inductors have the property of preventing sudden changes in current (this is analogous to a capacitor
which ‘resists’ sudden changes in voltage).
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Figure 2. AC and DC Current Paths
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Summing up: In switching regulator layout, it is the AC paths that are considered critical, whereas
the DC paths are not. That is the only basic rule to be kept in mind, and from which all the others
follow. This is also true for any topology. Perform an analysis of the current flow for any topology in the
same manner as we did for the Buck, to find the 'difference traces': and these traces are by definition the
'critical' ones for layout.

What is the problem with step current changes anyway? In a resistor for example, this causes no
unexpected/unidentifiable problem. The voltage is given by V=IR, and so for a given change of current,
the voltage will change proportionally. For example, a 0.5 cm wide Cu trace of thickness 1.4 mil has a
resistance of 1milliohm per cm length (at 20 ºC). So it seems that a 1 inch long trace with a current
changeover of 1A, would produce a change in voltage of only 2.5 millivolts across the trace, which is
insignificant enough to cause the control sections of most ICs to misbehave. But in fact the induced
voltage is much larger. The important thing to realize is that traces of copper on a PCB, though barely
resistive, are also inductive. Now, the oft-repeated thumb-rule is that ‘every inch of trace length has an
inductance of about 20 nH’. Like the trace resistance, that too doesn’t seem much at first sight. But it is
this rather minute inductance which is in fact responsible for a great many customer calls in SIMPLE
SWITCHER applications!

The equation for voltage across an inductance is V=L*dl/dt, and so the voltage does not depend on the
current but on the rate of change of the current. This fact makes all the difference when the 1A change we
spoke about occurs within a very short time. The induced voltage can be very high, even for small
inductances and currents, if the dl/dt is high. A high dl/dt event occurs during transition from Figure 2a to
Figure 2b (and back) in all the AC trace sections (shown bold in Figure 2c). The induced voltage spike
appears across each affected trace, lasting for the duration of the crossover.

To get a better feel for the numbers here: the change in current in the AC sections of a typical buck
converter is about 1.2 times the load current during the switch turn-off transition and is about 0.8
times the load current during the switch turn-on transition (for an 'optimally' designed Buck inductor,
as per inductor design guidelines in the relevant Datasheets/Selection Software). The transition time is
about 30 ns for high speed FET switchers like the LM267x, and is about 75 ns for the slower bipolar
switchers like the LM259x series. This also incidentally means that the voltage spikes in the high-speed
families can be more than twice that in the slower families, for a comparable layout and load. Therefore
layout becomes all the more critical in high-speed switchers.

So, one inch of trace switching say 1A of instantaneous current in a transition time of 30 ns gives 0.7V, as
compared to 2.5mV (that we estimated on the basis of resistance alone). For 3A, and two inches of trace,
the induced voltage 'tries' to be 4V! In Figure 2c, the small triangles along the sections indicate the
direction of the momentary induced voltage, as the converter changes from the situation in Figure 2a to
that in Figure 2b (switch turn-off). We can see that assuming that the ground pin of the IC is the reference
point, the switching node (marked ‘SW’) tries to go negative (all its series trace sections adding up).
Similarly the input pin (marked ‘VIN’ goes high through series contributions in all its related sections.
Figure 2c represents the picture during the turn-off transition. During the turn-on transition all the induced
voltage polarities shown are simply reversed. In that case, the VIN pin is dragged low, and the switching
node pin is dragged high momentarily.

The astute designer will recognize that this was to be expected since any inductance, even if it is parasitic,
demands to be ‘reset’, which means that the volt-seconds during the on-time must equal and be opposite
in sign to the volt-seconds during the off-time.The designer will also realize that till these parasitic trace
inductances reset, they do not 'allow' the crossover to occur. So for example, traces which were carrying
current prior to switch turn-off will 'insist' on carrying current till the voltage spikes force them to do
otherwise. Similarly, the traces which need to start carrying current will 'refuse' to do so till the spikes
across them force them to do likewise. Since switching losses are proportional to crossover time, even if
these voltage spikes do not cause anomalous behavior, they can degrade efficiency. For example, in
transformer-based flyback regulators, when the the primary number of turns is much larger than the
secondary turns, designers may be surprised to learn how much the secondary side trace inductances
alone can degrade efficiency. This is because any secondary side uncoupled (trace/transformer
leakage) inductances reflect into the primary side as an equivalent parasitic inductance in series
with the switch. This adds an additional term to the effective leakage as seen by the switch that
equals the secondary inductance multiplied by square of the turns ratio (turns ratio being Np/Ns).
Therefore the dissipation in the flyback clamp (zener/RCD) can increase dramatically, lowering efficiency.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA054C


Placing Components ‘acap’ (as Close as Possible) www.ti.com

6 SNVA054C–June 2002–Revised April 2013
Submit Documentation Feedback

Copyright © 2002–2013, Texas Instruments Incorporated

AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines

One lesson here is that though 'leakage inductance' (from traces or the transformer) is considered
'uncoupled', in reality it can make its presence severely felt from one side of the transformer to the other.
So it is not totally 'uncoupled' at all! In fact this happens to be the main reason why flybacks with low
output voltages (high turns ratio) show poorer efficiency as compared to higher output flybacks. Therefore,
reducing critical trace inductances is important for several reasons: efficiency, EMI, besides basic
functionality.

The momentary voltage spikes which last for the duration of the transition can be very hard to capture on
an oscilloscope. But they may be presumed to be present if the IC is seen to be misbehaving for no
'obvious reason'. These spikes, if present with sufficiently high amplitude, can propagate into the control
sections of the IC causing what we call here a controller 'upset’. This leads to the observed performance
anomalies, and in rare cases this can even cause device failure. Since none of these spike-related
problems can be easily corrected, or band-aided, once the layout is initially bad, the important thing is to
get the layout ‘right’ to start with.

The designer may well ask, why is it that these step current changes are a problem with the parasitic trace
inductances, and not with the main inductor of the Buck converter? That is because all inductors try to
resist any sudden current change. But since the main inductor has a much larger inductance (and energy
storage) as compared to the parasitic trace inductances, it therefore ends up ‘dominating’. From V × dt = L
× dl we can also see that if L is large, a much higher voltseconds (V × dt) is required to cause a given
change in current. The trace inductances therefore simply 'give in' first before the main inductor does. But
they certainly don't go down without a fight...and the voltage spikes bear testimony to this!

Notice that the currents in the signal traces in the schematic are not shown. For example those connected
to the compensation node (marked ‘COMP’) or bootstrap (marked ‘BOOST’) carry relatively minute
currents and therefore are not likely to cause upsets. They are therefore not critical and can be routed
relatively ‘carelessly’. The feedback trace is an exception, and will be discussed later. The Ground pin of
the IC is another potential entry point of noise pickup. Inexperienced designers often grossly under
estimate the needs of this pin, particularly for Buck converters. They assume that since the main power
flow in a Buck converter does not pass through the ground pin, the ‘current through the ground pin is very
low’, and therefore the trace length leading up to this pin is not critical. In fact, though the average current
through this pin is very low, the peak current or its dl/dt is not. Consider the switch driver as shown
schematically in Figure 2. Clearly it needs to supply current to drive the switch. In any FET operated as a
switch, large peak to peak instantaneous current spikes are needed to charge and discharge the gate
capacitance. This is essential so as to cause the FET to switch fast, and this reduces the
switching/crossover losses inside the switch and improves the overall efficiency of the converter. (Actually,
in a practical IC, the ‘spike’ of current comes from the bootstrap capacitor, and then the bootstrap
capacitor is quickly refreshed by the internal circuitry of the IC ---- it is the refresh current that passes
through the ground pin). Further, as in any high-speed digital IC, parts of the internal circuitry, clocks,
gates, comparators and so on, can turn on and off suddenly, leading to small but abrupt changes in the
current through the ground pin. This can cause 'ground bounce' which in turn can lead to controller upsets.
Therefore the length of the trace to the Ground pin also needs to be kept as small as possible. This also
implies that the input capacitors, especially the bypass capacitor ‘CBYPASS’ should be placed very
close to the IC, even for a Buck IC.

4 Placing Components ‘acap’ (as Close as Possible)
One has heard this before: “component X needs to be ‘acap’ ”. Soon we are told the “component Y too
needs to be ‘acap’ ”. Then “Z too”. And so on. Which would be physically impossible because matter
cannot occupy the same place at the same time! So which one comes first? This is the million-dollar
predicament always facing switcher layout.

The troubling trace lengths are those indicated Figure 2c. To keep them small, clearly two components
need to be acap. These are the input bypass capacitor and also the catch diode. Consider the input
capacitor section first.

In the schematic there are in two input capacitors shown. These are marked ‘CIN’ and ‘CBYPASS’
respectively. The purpose of the total input capacitance is to reduce the voltage variations at the input pin.
The variations are mainly due to the pulsed input current waveshape, as demanded by a Buck topology.
Note that for this particular topology, the output capacitor current is smooth (because the inductor is in
series with it). In a Boost topology the situation is reversed: that is, the input capacitor current is smooth
and the current into the output capacitor is pulsed. This makes the demand for input decoupling less
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stringent than in a Buck (or Buck-Boost). In a Buck-Boost or 'flyback', both the input and the output
capacitor currents are pulsed, and input decoupling is required not only for the control-section/drivers of
the IC but for the input current step waveform of the power stage. Designers familiar with a Cuk topology
know that in this case both input and output currents are smooth. The Cuk converter is therefore often
called the 'ideal DC to DC' converter, and expectedly its parasitic inductances can be largely ignored ----
because there are no AC trace sections in the sense we described.

Now if the input power to a Buck converter was coming through long leads from a distant voltage source,
the inductance of the incoming leads would seriously inhibit their ability to provide the fast changing
pulsed current shape. So an on-board source of power is required right next to the converter, and this is
provided by the input capacitor. It provides the pulsed current, and then is itself refreshed at a slower rate
(DC current) from the distant voltage source.

However, since the input capacitor is fairly large in size, it may not be physically possible to place it as
close as desired. Especially for very high speed switchers such as the LM267x series (note that a ‘high
speed’ switcher as defined here, is one with a very small crossover/transition time, and it does not
necessarily have to be one with a high switching frequency). In addition, the Equivalent Series
Resistance (‘esr’) and Equivalent Series Inductance (‘esl’) of the main input capacitor may be too high,
and this can cause high frequency input voltage ripple on the VIN pin.

For the Buck converter schematic as shown in Figure 2, the input pin connects not only to the Drain of the
FET switch, but also provides a low internally regulated supply rail to the control sections of the IC. But no
real series pass regulator can 'hold off' very fast changes in the applied input voltage. Some noise will
feed through into the control section and then much will depend on the internal sensitivity of the IC to
noise (related to its design, internal layout, process/logic family). It is therefore best to try to keep voltage
on the VIN pin fairly clean --—from a high frequency point of view. Note that it is not being suggested here
that one responds to this statement by increasing the input capacitance indiscriminately, because we are
not talking about the natural input voltage ripple which occurs at the rate of the switching frequency (for
example, 100 kHz–260 kHz). Our concern here is the noise occurring at the moment of the transitions,
and this noise spectrum peaks at around 10 MHz–30 MHz, as determined by the transition/crossover time
of the switch. The crossover time has nothing to do with the basic PWM switching frequency, but does
ofcourse depend on the type of switch used, that is, bipolar or FET.

Therefore a high frequency ‘bypass’ or ‘decoupling’ capacitor with small or no leads, shown as
‘CBYPASS’ in Figure 2, is to be placed very close to the VIN and GND pins of the IC. This is usually a 0.1
µF–0.47 µF (monolithic) multilayer ceramic (typically X7R type, size 1206 or the more recent 'inverted'
termination version of this popular size, the '0612' ---- also note that smaller sized ceramic caps generally
have higher esr/esl, but check before use). Since now this component provides the main pulsed current
waveshape, the bulk capacitor shown as ‘CIN’, may be moved slightly further up (about an inch) without
any deleterious effect. For lighter loads, and if it is possible to place the input bulk capacitor very close to
the IC, the high frequency bypass capacitor may sometimes be omitted. But for high-speed switchers
like the LM267x, the input ceramic bypass capacitor is considered almost mandatory for any
application.
The position of the catch diode is also critical. It too needs to be acap. Now, every topology has a node
called the 'switching node'. This is the 'hot' or 'swinging' end of the switch. For integrated switchers, this
node can also be an easy entry point for noise feed-through into the control sections. Note that the
problem is not caused by the simple fact that the voltage at this node swings, for it is designed for exactly
that situation in mind. The problem is with the additional noise spikes riding on top of the basic square
voltage waveform, arising from the trace inductances as explained earlier. Therefore, it is essential to
place the catch diode very close to the IC and connect it directly to the SW pin and GND pins of
the IC, with traces that are very short and fairly wide . In some erroneous layouts, where the catch
diode was not appropriately placed to start with, the converter could be ‘bandaided’ by a small series RC
snubber. This consists typically of a resistor (low inductive type preferred) of value 10Ω–100Ω and a
capacitor, which should be ceramic of value 470 pF–2.2 nF. Larger capacitance than this would lead
to unacceptably higher dissipation (=1/2*C*V2*f), chiefly in the resistor, and would serve no additional
purpose. However, note that this RC snubber needs to be placed very close to and across the
Switching pin and Gnd pin of the IC, with short leads/traces. Sometimes designers think that this is
'across the diode', because on the schematic there is no way to tell the difference. However, particularly
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when the diode is a Schottky, the primary purpose of such a snubber is to absorb the voltage spikes of the
trace inductances. Therefore its position must be such that it provides bypassing of the critical or AC trace
sections of the output side as shown in Figure 2c (right hand side of the switcher) ----which means it must
be close to the IC. Of course, as mentioned previously, it is best to get the layout right to start with, rather
than adding such extra components.

Remaining component placements can be taken up only after the input bypass capacitor and the catch
diode are firmly in place and are both acap. The traces to either of these two components should be short,
fairy wide, and should not go pass through any vias on the way to the IC. For SMT boards this implies that
the input capacitor and catch diode are on the same layer as the IC. In Figure 1 suggested PCB starting
points are provided for several switchers. All of them focus on placing these two critical components
correctly. These layouts are strongly recommended for most applications. The 'X' marks suggest the
recommended location where vias can be used to connect to a Ground Plane (if present).The
remaining components can be placed relatively carelessly (though in doing so, there may be slight impact,
for example on the accuracy of the output voltage rail and its ripple, but nothing compared to what can
happen if the input decoupling cap and catch diode are incorrectly placed). Trace routing is now discussed
in more detail.

5 Routing the Traces
As mentioned above, it is not advisable to route any of the critical traces through ‘vias’. Vias are
considered useful from a purely CAD perspective for ‘layer jumping’, but are often used indiscriminately as
they seem an easy solution to connectivity problems. But they also add impedance, and that is exactly
what we are trying to avoid. The inductance of a via is given by

(1)

where ‘h’ is the height of the via in mm (equal to the thickness of the board, commonly 1.6 mm), and ‘d’ is
the diameter in mm. Therefore a single via of diameter 0.4 mm on a standard 1.6 mm board gives an
inductance of 1.2 nH. It may not sound much, but it is almost twice that of a wire of the same length and
diameter. It has been seen empirically that for the high speed LM267x series, if the bypass
capacitor is connected through vias to the IC, occasional field problems do arise.So if vias have to
be used for some reason, several vias in parallel will yield better results than a single via. And larger
via diameters would help further (unless they are being used as 'thermal vias' --- discussed later).

It is also said that “the traces also need to be ‘wide’ and ‘short’ ”. The necessity of short traces is clearly
understood, usually intuitively, by most engineers. In fact, the thumb rule of ‘20 nH per inch’ also implies
that trace inductance is almost proportional to length. However, a common ‘intuitive’ mistake is to
assume that inductance is inversely proportional to the width of the trace. So some engineers
mistakenly ‘add copper’ lavishly to critical traces (though there are some other reasons why this may be
being done, and these will be discussed later). A first approximation for the inductance of a conductor
having length ‘l’ and diameter ‘d’ is

(2)

where l and d are in centimeters. Note that the equation for a PCB trace is not much different from that of
a wire.

(3)

where ‘w’ is the width of the trace. For PCB traces, L hardly depends on the thickness of the copper ( 1 oz
or 2 oz board). Both Equation 2 and Equation 3 are plotted in Figure 3. It will be seen that for a given
length, a PCB trace of width ‘x’ has higher inductance than a wire of diameter ‘x’. In fact, the width of a
PCB trace has to be about 1.78 times the diameter of a wire for the same inductance.

A wire of AWG 20 has a diameter of 32 mils (or 0.081 cm). So for a length of one inch (1000 mils or 2.54
cm) L equals 21 nH (which is the usual thumb rule). We can see that L is almost proportional to length.
But if we double the diameter to 0.16 cm, L equals 17 nH, which is not much different from 21 nH. This
indicates a non-linear relationship. Referring to Figure 3, where the above function is plotted out (dotted
lines are for a PCB trace), we can see that the diameter/width of a wire/trace has to typically increase
by a factor of 10 for the inductance to halve. The relationship of L to d is therefore logarithmic in
nature. The reason for this is the effects of mutual inductance between parallel sections/strips of the
conductor.
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Figure 3. Inductance of Wire of Length ‘1’

‘Beefing up’ traces to reduce the effects of parasitic inductances should be a last resort. Decreasing the
length of the trace should be the first step. Increasing the width of certain traces can in fact
become counterproductive. In particular, the trace from the switch node to the diode is ‘hot’ from an EMI
point of view. This is not only because of the AC (high frequency) current it carries, but because of its
voltage, which is a switched waveform. Any conductor with a varying voltage, irrespective of the current,
becomes an antenna if its dimensions are large enough. Radiated emissions from this antenna can cause
undesirable common-mode interference in its vicinity. Therefore this calls for the area of the copper
around the switching node to be reduced, not increased. Large planes of switched voltage also cause
capacitive noise coupling into nearby traces. On a typical SMT board, if the opposite side happens to be a
'ground plane', noise from the switching node can couple through the FR4 dielectric of the PCB into the
Ground plane. No Ground plane is 'perfect', and therefore this injected high frequency noise can also
cause the ground plane to not only radiate, but to pass noise onto the IC through 'ground bounce'. Some
people suggest that a copper island, exactly the same size/shape as the switching-node island be created
on the opposite side of the PCB, connected through several vias. This is supposed to prevent 'capacitive
cross-talk' to other traces and to enhance thermal dissipation. But this obviously also leads to the
breaking-up/partitioning of the Ground plane. This defeats the very purpose of Ground plane as it can
cause strange effects arising due to the odd current flow patterns in the now divided Ground plane. In
general, the Ground plane should be kept continuous/unbroken as far as possible, or it could
behave like a slot antenna. For the switching node therefore, the best option is to keep the amount
of copper around it to the actual minimum requirement.
Some basic physics to be reminded of here: electric fields are caused by electric charge, and magnetic
fields by currents. But if an electric field varies with time, it produces a corresponding magnetic field.
However magnetic fields are associated with currents. Therefore AC voltages (varying electric fields) on
opposite planes of copper on a PCB cause a 'displacement current' (capacitive coupling current) through
the FR4 dielectric. Similarly, a varying magnetic field causes an electric field. So for example in a
transformer, when we pass AC current (varying magnetic field) in a winding, we get Faraday induced
voltages (electric field). Whenever voltage or current is switched, an electromagnetic field is generated,
which produces EMI. And this EMI is inadvertently 'helped' by antenna structures. Therefore, on a PCB
layout, the area enclosed by all current loops carrying 'AC (switched) current' must be kept small.
Similarly the area of copper planes with 'AC (switched) voltage' must be kept small. Both can
behave as antennae. In addition, traces carrying switching currents/voltages must also be kept
away from 'quieter' traces to avoid cross-coupling. Further, since 'sharp edges' are known to
cause an increase in field strengths, two 45 degree bends in a trace are preferred to a single 90
degree bend.

6 Copper Filling: When to Stop
Adding copper lavishly to traces serves some purpose occasionally, sometimes none at all, and
sometimes it even works against the design in an unintended manner. There may be no simple hard and
fast rules here. Judiciousness needs to be applied. But first it is instructive to consider some of the
‘reasons’ why copper is lavished, and to the degree it is really required. Most often the requirements are
actually much less than predictions based on 'gut instinct':
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We will take each of these separately:

6.1 Current Handling Capability
If we multiply the width of a trace with its thickness we get the ‘cross sectional area’ of the conductor. This
determines the resistance (per unit length) of the conductor and the consequent self-heating. This leads to
an estimable temperature rise. It is important to note that the ‘current handling capability’ is therefore not a
‘stake in the ground’ as some people think, but is related to a permissible temperature rise. Mil Standards
call for maximum 20°C rise, but 30°C–40°C are also common. Figure 4 is a chart that helps in the correct
estimation.

Figure 4. MIL-STD-275E Curves for Current Density Curve for
Outer Layer PCB Copper Etch vs Temperature Rise

Commercial PCB’s are often referred to as ‘1 oz’ or ‘2 oz’, for example. This refers to the weight of copper
in ounces per square foot deposited on the copper clad laminate. 1 oz is actually equivalent to 1.4 mils
copper thickness (or 35 µm). Similarly 2 oz is twice that. We are only considering outer layers (not
internal layers) in this application report, and therefore at most double-sided (2 layer) boards.

Using the thickness of the copper trace we can find the trace width required. For example for 1 oz copper
board (1.4 mils copper thickness), and allowing 20°C rise in temperature, for 4A of current we need
75/1.4=54 mils (1.4 mm) wide trace. For a 2 oz board we need exactly half of that, that is, 0.7 mm width.

However note that a 1 oz double sided board will pass through an electroless copper plating process
stage (before solder mask is applied) to create the vias (/PTH: Plated Through Hole), and so it may end
up effectively as being considered closer to a 1.4 oz copper board. Therefore it is a good idea to check
this out with the PCB manufacturer before even starting the layout. Also note that even a single-sided
board passes through a hot air solder level finishing stage (after solder mask), where a thin Tin-Lead layer
is deposited on the 'unmasked' (no solder mask) copper areas. This does increase the effective thickness
of these traces, but doesn't help as much as copper plating, since Tin-Lead has 10 times higher resistivity
than copper.

When estimating resistive heating, it is important to know the average current in the traces. For a
Buck converter, in the AC traces of the input sections (the left hand side of the IC in Figure 2c) the
average current is lo × D, where lo is the load current and D the duty cycle. For the AC traces of the
output section (the right-hand side), the average current is lo × (1-D). So if the load current is 3A, and the
duty cycle (≈Vo/Vin) is say 0.4, then the average current on the input side is 1.2A only. On the output side
it is 1.8A. In neither case is this equal to the load current of 3A! So the trace should be sized correctly and
according to such a calculation.

Note that the expected temperature rise stated above is based on ‘self-heating’. But a trace can become
very hot simply due to heat from a nearby component. In that case, even a 30°C (additional) rise due to
self-heating may be unacceptable. And the 'acceptable' rise also depends on worst-case ambient
temperature, and also the rated temperature of the board laminate (keep below 120°C for FR4).

A quick thumb rule that closely follows the above discussion, for moderate temperature rise (less than
30°C) and currents less than 5A:
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• Use at least 12 mils width of copper per amp for 1 oz board
• Use at least 7 mils width of copper per amp for 2 oz board

6.2 Trace Inductance
We have seen that the preferred method to reduce trace inductance is to reduce length, not increase
width. Beyond a certain point, widening of traces does not reduce inductance significantly. Nor does it
depend much on whether we use 1 oz or 2 oz boards. Neither does it depend on whether the trace is
unmasked or not (to allow solder/copper to deposit and thereby increase effective conductor thickness).
But if for some reason the length cannot be reduced, another way to reduce inductance is by paralleling of
forward and return current traces.

Inductances exist because they can store magnetic energy. Therefore conversely, if the magnetic field is
somehow cancelled, the inductance too vanishes. By paralleling two current traces, each carrying
current of the same magnitude but in opposite direction on a PCB, the magnetic field is greatly reduced.
These two traces should be parallel and very close. They can be run side-by-side on the same side for a
single-sided board. If a double-sided PCB is being used, the most effective solution is to run the traces
parallel and on opposite sides of the PCB. The traces can and should be fairly wide in this case to
improve their mutual coupling and create the required field cancellation. Note that if a ground plane is
used on one side, the return automatically ‘images’ the forward current trace and produces field
cancellation and reduction in inductance.

The designer may well ask: what happens to the inductance equation for trace length we presented
earlier? ---that didn't seem to indicate that paralleling should help. The problem with the simple trace
inductance equation is that it is an approximation. There is simply no such thing as an independent
straight piece of wire carrying current in a given direction --- current must return and so there are
only current loops. This follows from basic Physics --- charge cannot accumulate and must return: in this
case to the opposite terminal of the emf source responsible for the flow of current. So whenever we talk
about the inductance of just a single wire, basically we are talking about a very large loop. Since
inductance of a current carrying loop is proportional to the area enclosed by the loop, if the loop area is
made very small, inductance too is reduced.

6.3 Thermal Management
Natural convection depends on the amount of surface area that is in contact with the air. If a conductive
plate serving as a 'heatsink' is thick enough to ensure perfect thermal conduction into the far recesses of
the plate, the temperature rise would have been simply inversely proportional to the total exposed area.
PCB copper planes too are in that sense an aid to convection, the difference being that they are not thick
enough to ensure perfect conduction. Therefore at some point, we will reach a point of diminishing returns:
very large increases in the copper area will produce smaller and smaller improvement in the thermal
resistance. This occurs roughly for a square of side 1 inch on a 1 oz copper board. Some improvement
continues till about 3 inches, especially for 2 oz boards and better, but beyond that, external heatsinks are
required. Ultimately, a reasonable practical value attainable for the thermal resistance (from the case of
the power device to the ambient) is about 30°C/W.

That is not to say that heat is lost only from the copper side. The usual laminate (board material) used for
SMT applications is epoxy-glass ‘FR4’ (also known as GF or G10) which is a fairly good conductor of
heat. More commercial and cost-effective applications use cheaper board materials like CEM1, CEM2,
CEM3 and so on, which are fortunately not much worse as thermal conductors than FR4. So some of the
heat from the device side does get to the other side where it contacts the air. Therefore putting a copper
plane on the other side (this need not even be electrically the same node, it could be the ground
plane) also helps, but only by about 10%–20% as compared to a copper plane on only one side. A
much greater reduction of thermal resistance by about 50%–70% can be produced if ‘thermal vias’
are used to conduct heat to the other side. This thermally ‘shunts’ or bypasses the board material to
get the heat to the other side where there is more exposure to air movement.

The tab of the power packages of the Simple Switcher devices is fortunately at Ground potential, so
having large copper planes around the tab will not produce EMI. The tab can be left floating, but if it is
used, it must be physically connected directly to the GND pin of the IC as indicated in Figure 1. If a
double-sided board is used, several small vias can be sunk right next to the IC Ground in positions
marked 'X' on to a ‘Ground plane’ on the other side of the PCB. These vias therefore not only help in the
correct electrical implementation of grounding, but also can serve as thermal shunts. They are therefore

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SNVA054C


Ground Plane www.ti.com

12 SNVA054C–June 2002–Revised April 2013
Submit Documentation Feedback

Copyright © 2002–2013, Texas Instruments Incorporated

AN-1229 SIMPLE SWITCHER® PCB Layout Guidelines

appropriately called ‘thermal vias’. It is recommended that they be small (0.3 mm–0.33 mm barrel
diameter) so that the hole is essentially filled up during the plating process, thus aiding
conduction to the other side. Too large a hole can cause ‘solder wicking’ problems during the
reflow soldering process. The pitch (distance between the centers) of several such thermal vias in
an area is typically 1 mm–1.2 mm and a grid of thermal vias can be created right under the tab.
Since the thermal vias also 'steal' heat away from the area during the reflow cycle, occasionally leading to
poor solder joints, some recommend that vias (thermal or otherwise) should be close to, but never directly
under the tab/legs/pins of any component.

From the point of view of the internal construction of a typical switcher IC, there is no reason to make the
trace around the switching node wide since very little heat can come out this way. As mentioned earlier,
this node can act as an antenna and cause radiation problems. However, there are situations where a
large amount of copper on the switching node may just be unavoidable. The tab of most power diodes is
the cathode. To sink heat from the diode, a large heatsink or copper plane must be connected to the tab.
Unfortunately for a conventional positive to positive Buck topology (unlike the positive to positive Boost or
the negative to positive Buck-Boost) the cathode/tab of the diode corresponds to the switching node,
which is not ‘quiet’. Therefore we have a conflict of interest here between thermal requirements and EMI.
For EMI-sensitive applications, a rather non-typical diode with the anode internally connected to the tab
can be sought. Or, if an external heatsink is being used, it is recommended that there be electrical (not
thermal!) isolation between the power device and the (grounded) heatsink. Mica or 'Sil-pads' are possible
choices here. If the diode must be SMT, an isolated SMT package may be a good choice.

Overestimating the amount of the copper plane for device cooling is a common mistake, and can lead to
excessive EMI. The heating in a Buck converter diode is based on the average current through the
diode, not the load current. Note that a typical Schottky diode has a forward voltage drop of 0.5V. If the
load current is 5A and the duty cycle is 0.4, the dissipation is only 5*0.5*(1–0.4)=1.5W. If the temperature
of the board (the copper area around the tab) is to be say a maximum of 100°C, and the maximum
ambient is 55°C, the allowed temperature rise here is 100–55=45°C. For 1.5W of estimated dissipation,
the required board (or case) to ambient thermal resistance is 45/1.5=30°C/W. This as we have seen is
achievable on a PCB. To calculate the required area, we can use as a good approximation an
equation derived from empirical equations for a plate of area ‘A’:

A = 985 × Rth−1.43 × P−0.28 sq.inches (4)

Where: P is in Watts and Rth is the required thermal resistance in °C/W. Solving for our example:

A = 985 × 30−1.43 × 1.5−0.28 sq.inches

A = 6.79 sq.inches

If this area is square in shape, the length of each side needs to be 6.790.5 = 2.6 inches. If the area called
for exceeds 1 sq inch, a 2 oz board should be used. Clearly a 2 oz board should be used in the
example, as it reduces the thermal ‘constriction’ around the power device and allows the large copper
area to be more effectively used for convection. Note that we are considering only a copper plane
exposed to air on one side of the PCB. Breaking up the Ground plane to create islands on the other side
to connect to was not considered a good option as it leads to odd return current patterns.

7 Ground Plane
With double-sided boards, it is a common practice to almost completely fill one side with ground. There
are people who usually rightly so consider this a panacea or ‘silver bullet’ for most problems. As we have
seen, every signal has a return, and as its harmonics get higher, the return ‘wants’ to be directly under the
signal path, thus leading to field cancellation, and reduction of inductance. It also helps thermal
management as it couples some of the heat produced by power devices on one side of the board to the
other side. The Ground plane also capacitively links to noisy traces above it, causing some 'softening' of
transients and thereby some reduction in noise/EMI ---unless the cross-coupling is so severe as to
start causing the Ground plane itself to radiate. Vias can be sunk under the ground terminal of all
power components in to the Ground plane, and this reduces DC resistance offset errors on the output
voltage too for example. As mentioned, in Figure 1, ‘X’ marks have been placed to indicate that if there is
a double sided board in use, and a Ground plane is present, then vias can be added at these points. They
are optional, and so if a low cost single-sided board is preferred, they can be omitted. But if these vias are
also doubling over as ‘thermal vias’ for the switcher IC, as when they are under the tab of an SMT power
device, they should be sized appropriately as previously discussed.
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However, a Ground plane should be an ‘add-on’ to the recommendations in Figure 1. It does not
substitute the correct placement of the two critical components. Much effort should go into not
breaking or partitioning this plane. Further, in general, if too much switching power flow occurs through
such a plane, it can create 'ground bounce' and cause controller upsets. Therefore in higher power
applications, with the added luxury of multi-layer PCBs, separate signal and power ground planes are
used. But for the lower power SIMPLE SWITCHER family, a single Ground plane is all that may be
required. And if the layout is carried out conscientiously , keeping all the recommendations in mind, even a
single-sided board should suffice.

8 Signal Traces: Feedback
The only critical signal trace is the feedback trace. First consider only the Adjustable versions of the
Simple Switchers. One end of the trace connects to a low impedance node, which is the output rail or a
resistive divider at the output. The other end connects to the feedback pin, which is the high impedance
input of the error amplifier. If this trace picks up noise (capacitively or inductively) as it passes between
these two nodes, it can lead to erroneous output voltages, and in extreme cases even instability or device
failure. There seem to be just two options for this
1. Keep the feedback trace short if possible so as to minimize pickup AND/OR
2. Keep it away from noise sources (for example, switching diode, inductor)

Keeping the trace short may not be feasible. In fact, the feedback trace may be deliberately kept
slightly longer so as to route it away from potential noise sources. It should not pass under the
inductor or diode in particular. If a double-sided SMT board is being used, a good strategy is as
follows:
• use a via at the output resistive divider to bring the trace to the other side
• run the trace to cut through the surrounding ground plane areas, taking care not to pass it under the

inductor/diode and not parallel to any power trace on either side of the board (though it can cross them
perpendicularly)

• and then very close to the IC, use another via to bring out the trace to the component side where it
connects to the feedback pin of the IC

Refer to Figure 5a which shows the situation for the Adjustable part. The trace which picks up noise is
bold. However, if we consider a fixed voltage part, we learn an important thing. This is Figure 5b. Note that
the feedback trace here is not marked bold. The reason is that a trace can pick up noise only if at least
one end of it is a high impedance node. In Figure 5b, the feedback pin goes to a resistive divider rather
than directly to the input of the error amplifier. So it is relatively immune to noise pickup. The only section
where noise can be picked up is inside the IC (shown bold), and this is a very short path. Applying the
same principle to an Adjustable part provides another interesting way to route the feedback trace. One
way is shown in Figure 5c. Here the length of the ‘feedback trace’ is very short, so it is relatively noise-
free. The feedback resistors are physically close to the IC and the trace from the output to the upper
resistor has low impedances on either side, and so does not pick up noise. However, the connection of
the lower resistor to ground is not ideal as the resistive drop across the section marked ‘lo*R’ will affect
the output voltage load regulation slightly. Another way is in Figure 5d, and this resolves both issues.
This is therefore recommended. If a ground plane is used however, both Figure 5c and Figure 5d are
actually the same if vias are correctly placed to couple into this plane. For Figure 5d, if possible, it is a
good idea to run the top and bottom traces to the resistive divider parallel and close to each other, so as
to minimize any further chance of noise pickup.
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Figure 5. Feedback Traces (Bold Lines Susceptible to Noise)
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